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Measures of Relative Performance

Summary. The relative performance measures can be expressed, in general terms, according

to the following formula1:

PMp = P(rp− τ1)×
[
R(rp− τ2)× cp

]−1
, (2.1)

where P (·) is a function that depends upon the observed performance, R(·) is a risk measure

of the investor’s portfolio, τ1 and τ2 are two specific threshold returns, and cp is a correction

term. More precisely, “relative risk-adjusted performance measures” aim at comparing the ex-

pected return of managed portfolios in excess of a threshold, per unit of risk. The portfolio

performance corresponds to an increasing function of the measured performance and a de-

creasing function of the estimated risk.

The Sharpe ratio (Sharpe, 1966) is the most representative measure in this class. Directly re-

lated to the Mean-Variance model developed by Markowitz (1952), this ratio uses a mean

return as a numerator and a standard deviation of portfolio returns as a risk measure. When

comparing potential benefits of an investment portfolio, relative to its underlying total risk,

practitioners often refer to the Sharpe ratio as the reference performance measure. In some

cases, managed portfolios are ranked by means of Sharpe ratios (Ackermann et al., 1999;

Liang, 1999; Schneeweis et al., 2002); however, academics and practitioners have proposed

1 For the sake of simplicity, we do not consider the time subscript for most of the performance
measures presented in this book (except when it is strictly necessary).
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many other Sharpe-based performance measures in order to overcome some of its well-known

limitations (mainly regarding the evaluation of portfolio total risk).

2.1 The Sharpe (1966) Reward-to-variability ratio

This first ratio, also called “Reward-to-variability ratio”, was developed by Sharpe (1966).

This performance measure equals the expected return of the investor’s portfolio in excess

of the risk-free rate (a quantity also called “risk premium” or “reward”) over the standard

deviation of returns on the same portfolio. The Sharpe ratio is expressed as follows:

Sp =
[
E
(
rp
)
− r f

]
×
(
σrp

)−1
. (2.2)

This measure evaluates the compensation earned by the portfolio manager per unit of portfolio

total risk, namely both systematic and idiosyncratic risks2.

Despite some limitations, the Sharpe (1966) ratio is still considered as the reference per-

formance measure. If we derive this ratio within a Markowitz framework, it shares the same

drawbacks of the Mean-Variance model, where the representative investor is characterized by

a quadratic utility function and/or the portfolio returns are assumed Gaussian. However, it is

well-known that financial returns are not Gaussian, also due to investment strategies based

on derivatives with time-varying exposures and leverage effects. An incorrect assumption of

Gaussianity may lead to an underestimate of the portfolio total risk (see Amin and Kat, 2003;

Geman and Kharoubi, 2003) and, thus, to biased investment rankings (a downward biased

risk evaluation induces an upward biased Sharpe ratio). Furthermore, the standard deviation

equally weights positive and negative excess returns, and it has been shown that this quantity

can be subject to manipulations (see Goetzmann et al., 2007) . Another issue of using volatil-

ity as a risk measure is related to the liquidity problem of some categories of risky assets (see

Getmansky et al., 2004) . Moreover, the Sharpe ratio does not completely reflect the attitude

2 We should mention that Treynor and Black (1973) propose a performance measure, named
“Appraisal ratio” (see, p. 74), corresponding to the Sharpe ratio squared, as noticed by
Sharpe (1994) on p. 52.
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towards risk for all categories of investors, as it assumes a constant risk-free rate, identical

for lending and borrowing. Finally, the validity of this performance measure heavily relies on

the accuracy and stability of the first and second moment estimations (Merton, 1981; Engle

and Bollerslev, 1986) . Israëlsen (2005) highlights that when the average return is negative,

the portfolio with higher standard deviation leads to a better Sharpe ratio, which is counter-

intuitive. Thus, he suggests correcting this drawback, when it is negative, by multiplying –

instead of dividing – the return of the managed portfolio by its total risk.

2.2 Sharpe-like Performance Measures

The measures presented herein aim at evaluating the relative risk-adjusted performance of

investment portfolios. They define risk using quantities that are directly linked to the standard

deviation, but with some amendments.

The Jobson-Korkie ( 1981 ) T-Stat. Jobson and Korkie (1981) propose a test-statistic, used

to verify the null hypothesis of equality between two Sharpe ratios for any couple of managed

portfolios

However, this test is not valid when the distribution of the investor’s portfolio returns have

tails heavier than a Gaussian return distribution (corrections have been proposed by Memmel,

2003). , which is given by:

ĴK p1,p2 =
[
σ̂rp1
×
(
rp2 − r f

)
− σ̂rp2

×
(
rp1 − r f

)]
× θ̂
− 1

2 , (2.3)

with:

θ̂ = N−1×
{

2σ̂
2
rp1

σ̂
2
rp2
−2σ̂rp1

σ̂rp2
σ̂rp1 ,rp2

+
1
2

r2
p1

σ̂
2
rp2

+
1
2

r2
p2

σ̂
2
rp1

−
[(

rp2 rp1

)
×
(

2σ̂rp1
σ̂rp2

)−1
]
×
[
σ̂

2
rp1 ,rp2

+ σ̂
2
rp1

σ̂
2
rp2

]}
,

where rpn , with n = [1,2], is the mean return of two portfolios and N is the total number of

observations.
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Jobson and Korkie (1981) show that, under the null hypothesis of two identical Sharpe

ratios and when portfolio returns are i.i.d, the ĴK p1,p2 statistic follows a law which is asymp-

totically distributed as a Gaussian one with a zero mean and an unit standard deviation. Jobson

and Korkie (1981) and Jorion (1985) note that the statistical power of this test is low, espe-

cially for small sample sizes. Such an outcome could be due to the presence of serial correla-

tion and/or heteroskedasticity in the portfolio returns. A more robust approach for testing the

equivalence of Sharpe ratios has been proposed by Ledoit and Wolf (2008).

The Israëlsen (2005) Reward-to-absolute Excess Return Ratio. Israëlsen (2005) pro-

poses the “Reward-to-absolute excess return ratio” in order to correct a drawback of the Sharpe

(1966) ratio when the estimated expected return of the managed portfolio is negative. This per-

formance measure is defined as:

ISp =
[
E
(
rp
)
− r f

]
×
(

σ
−1
rp

)λp
, (2.4)

with λp = Sgn
[
E
(
rp
)
− r f

]
×1.

Results obtained with the Sharpe (1966) ratio and the Israëlsen (2005) reward-to-absolute

excess return ratio differ when the investor’s portfolio expected excess return is negative. In

this peculiar case, the expected excess return of the manager’s portfolio is adjusted (i.e., mul-

tiplied) by the total risk, in order to heavily penalize its under-performance while maintaining

a coherence in terms of rankings compared to those obtained with the Sharpe (1966) ratio.

The Morey-Vinod (2001) Double Sharpe Ratio. Morey and Vinod (2001) develop a

performance measure, named “Double Sharpe ratio”, which refines the original Sharpe ratio

by taking into account the sampling error. The Double Sharpe ratio is given as:

DSp =
{[

E
(
rp
)
− r f

]
×σ

−1
rp

}
×
(
σSp

)−1
, (2.5)

where σSp is the standard deviation of the estimated Sharpe ratios.
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In order to obtain an estimate of σSp , the authors generate a large number of excess return

series by resampling the observed excess return using a simple bootstrap methodology (Mem-

mel, 2003; Ledoit and Wolf, 2008) . Then, they compute Sharpe ratios for each simulated

series and calculate the standard deviation of all these Sharpe ratios. Their main innovation

is to explicitly consider model risk in the computation of Sharpe ratios, maintaining the in-

terpretation similar to that of the original Sharpe performance measure. However, the use of

bootstrap methods for independent data might be a problem.

The Watanabe (2006) Extended Sharpe Ratio. Watanabe (2006) proposes an extension

of the original Sharpe (1966) dealing with higher-moments, which is written as:

WSp = Sp +
[
skrp ×

(
κrp

)−1
]

, (2.6)

where Sp is the Sharpe (1966) ratio, skrp and κrp respectively correspond to the skewness and

the kurtosis of the investor’s portfolio return distribution.

Based on a similar approach, Zakamouline-Koekebakker (2009) propose the Adjusted for

Skewness Sharpe ratio.

The Zakamouline-Koekebakker (2009) Adjusted for Skewness

Sharpe Ratio. Zakamouline and Koekebakker (2009) build a performance measure, named

“Adjusted for Skewness Sharpe Ratio” that accounts for the third moment of the portfolio re-

turn within an Expected Utility theory framework. The authors introduce the notion of relative

preferences to higher moments of return distributions. These are defined as the relation be-

tween the absolute preference to the third moment and the absolute preference to the second

moment (Pratt, 1964; Arrow, 1971) . In a Mean-Variance-Skewness framework, the proposed

measure is given by:

ASSRp =
{[

E
(
rp
)
− r f

]
×σ

−1
rp

}
Unexpectedeqnlinespacer

×
{

1+b3,p×
[
skrp × (3)−1

]
×
{[

E
(
rp
)
− r f

]
×σ

−1
rp

}} 1
2
,Unexpectedeqnlinespacer(2.7)
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where b3,p, corresponding to the investor’s relative preferences for skewness, is defined as:


b3,p = (−1)2×

{{
U (3) (rp

)
×
[
U (1) (rp

)]−1
}
×
(
γp
)−2
}

γp =−U (2) (rp
)
×
[
U (1) (rp

)]−1
,

and γp is the Arrow-Pratt measure of absolute risk aversion.

In other words, Equation (2.7) corresponds to the original Sharpe ratio corrected by a

“skewness adjustment factor”. The value of b3,p is directly linked to the investor’s utility

function. Indeed, a CARA utility function is implied by a coefficient b3,p = 1, whilst a CRRA

utility function is induced by any coefficient b3,p > 1. Zakamouline and Koekebakker (2009)

develop an extension which considers the fourth moment (see also Watanabe, 2006) .

The Sharpe (1994) Information Ratio. Since the reference to competitors is a crucial

topic in the management industry, Sharpe (1994) proposes a second performance measure,

named “Information Ratio” (IR), which takes into account the Tracking Error volatility of an

actively managed portfolio. The Information Ratio is given by:

IRp =
[
E
(
rp− rB

)]
×
(
T Erp,rB

)−1 . (2.8)

This measure allows us to track the persistence of over or under-performance between

the investor’s portfolio and the chosen benchmark. In other words, it provides an assessment

of the “quality” of investment choices made by the portfolio manager. Similar to the correction

proposed for the Sharpe ratio, Israëlsen (2005) suggests a modified Information Ratio where

the average return of the investor’s portfolio is negative. In this case, the excess return of the

investor’s portfolio is multiplied by its Tracking Error volatility..

The Gillet-Moussavou (2000) Information Ratio. In order to only take into account the

negative deviations, Gillet and Moussavou (2000) suggest another corrected Information Ratio

by replacing the Tracking Error with the semi-variance of the excess return of the managed

portfolio. This measure thus reads:
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GMIRp =
[
E
(
rp− rB

)]
×
[
GLPMrp−rB,E(rp−rB),0,2

]− 1
2 , (2.9)

where GLPMrp−rB,E(rp−rB),0,2 corresponds to the semi-variance of the managed portfolio re-

turns in excess of the benchmark portfolio returns.

The Israëlsen (2005) Information Ratio. In the same vein as the previous measure,

Israëlsen (2005) also suggests a corrected Information Ratio (Sharpe, 1994) , specifically when

the estimated expected return of the investor’s portfolio is negative. This measure reads:

IIRp =
[
E
(
rp− rB

)]
×
(

T E−1
rp,rB

)λp
, (2.10)

where λp = Sgn
[
E
(
rp
)
− r f

]
×1.

Results obtained with the Sharpe (1994) and the Israëlsen (2005) information ratios only

vary when the investor’s portfolio expected excess return is negative. In this case, the expected

excess return of the manager’s portfolio is adjusted by the tracking error in order to penalize

its under-performance.

The Treynor (1965) Reward-to-volatility Ratios. Treynor (1965) proposes two “Reward-

to-volatility ratios” that are based on the systematic risk sensitivity of the managed portfolio

returns. This risk measure is directly linked to the non-diversifiable risk, related to the so-called

“beta”, and obtained from a single index regression. The first ratio, known as the “Treynor ra-

tio”, is written as:

T1,p =
[
E
(
rp
)
− r f

]
×
(
βrp,rm

)−1 , (2.11)

and the second one, also referred to as the Appraisal Ratio3 , is formulated as:

T2,p =
{[

E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

}
×
(
βrp,rm

)−1 . (2.12)

3 See also Smith and Tito (1969) for a discussion about the Treynor (1965) ratios. The second
ranking measure T2,p proposed by Treynor (1965) - see p. 75 - is sometimes referred to a
few authors as the Treynor-Black (1973) Appraisal ratio.
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Assuming a perfectly diversified portfolio (with a null specific risk), T1,p evaluates the

compensation earned by the manager, with respect to the market risk exposure of portfolio

p, while T2,p assesses the extra performance realized by the manager over the risk premium

offered by markets. This second ratio illustrates the investor’s abilities to over-perform the

market portfolio, when investors hold an amount of private information, potentially not re-

flected yet in the current market prices.

Several authors propose close variants of the Treynor ratio T1,p. Bacon (008b) suggests

multiplying the systematic risk sensitivity of the investor’s portfolio return by the total risk

of the market portfolio, while Srivastava and Essayyad (1994) replace the traditional beta in

Equation (2.11) with a modified version defined as the ratio between partial moments. In the

context of the Arbitrage Pricing Theory developed by Ross (1976), Hübner (2005) proposes a

generalized version of T2,p including the effects of risk factors.

The Bacon (008b) modified Treynor Ratio. Bacon (008b) introduces another modified

version of the original Treynor (1965) ratio by also considering in the denominator the total

risk of the market portfolio such as:

mT1,p =
[
E
(
rp
)
− r f

]
×
(
βrp,rm ×σrm

)−1 , (2.13)

where σrm is the total risk of the market portfolio.

The measures related to the Sharpe ratio have been subjected to different criticisms. In or-

der to correct the potential estimation error when the Sharpe ratio is obtained from historical

data, Morey and Vinod (2001) propose a simple bootstrap procedure. Other, more efficient,

approaches have been proposed for dealing with model risk. However, the exact characteriza-

tion of a return distribution by moments is a difficult problem (Kimball, 1993) . In addition,

estimations are usually based on Conventional-moments, known to be highly responsive to

sampling variability (see Hosking, 1990 ). Sharpe (1994) proposed using the Tracking Error.

Still, this complementary risk measure does not differentiate positive from negative variations,

and the definition of the benchmark is crucial. Treynor (1965) focuses on the systematic risk
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sensitivity of the investor’s portfolio returns to those of the market portfolio. Nevertheless, this

supposes a unique risk factor economy and a portfolio exposure to the systematic risk being

stable over time. Finally, the idiosyncratic risk is just neglected, which cannot be without con-

sequences in the context of performance measurement.

2.3 Relative Performance Measures based on Other Risk

Measures

The set of performance measures, presented hereafter, adjusts the reward earned by the

portfolio manager according to alternative risk measures. Some examples are given by Semi-

volatility, Linear-moment of order 2, Mean Absolute Deviation, Value-at-Risk and range ra-

tios.

The Sortino-Satchell (2001) Reward-to-Lower Partial Moment Ratio. Sortino and Satchell

(2001) develop a performance measure based on Lower Partial Moments. The “Reward-to-

Lower Partial Moment ratio” is formulated as:

RLPMp =
[
E
(
rp
)
− τ
]
×
(
GLPMrp,τ,τ,o

)− 1
o , (2.14)

where o is a positive constant and τ is a generic threshold. Sortino and Meer (1991) introduce

a close variant, named the “Sortino ratio”, which is based on the square root of an LPM of

order 2 (i.e. with o = 2) and on a threshold equals to a MAR. Watanabe (2006) proposed an

extension of the Sortino ratio by adding a term related to the skewness and kurtosis of the

portfolio returns. Kaplan and Knowles (2004) develop the so-called “Kappa 3 ratio”which

uses o = 3. A further case is the “Downside Risk Sharpe ratio” suggested by Ziemba (2005)

(see also Gergaud and Ziemba, 2012) , which is obtained by considering the square root of an

LPM of order 2 (i.e. o = 2) multiplied by 2 in the denominator of Equation (2.14) and for a

threshold equal to the expected return E(rp). The Sortino-Satchell (2001) index evaluates the

portfolio managers’ performance by considering their risk profile. For example, a high (low)
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threshold level characterizes managers with a high (low) degree of risk aversion.

The Watanabe (2006) Extended Sortino Ratio. In the same vein, Watanabe (2006) also

suggests an extension of the Sortino-Meer (1991) ratio, by adding a term that takes into ac-

count the third and fourth moments of the underlying return distribution. It is given by:

WRLPMp = Sop +
[
skrp ×

(
κrp

)−1
]

, (2.15)

with:

Sop =
[
E
(
rp
)
−MAR

]
×
(
GLPMrp,MAR,MAR,2

)− 1
2 ,

where MAR denotes the Minimum Acceptable Return.

The Dowd (2000) Reward-to-Value-at-Risk Ratio. Based on a quantile model, Dowd

(2000) introduces a performance measure that adjusts the expected excess return of the in-

vestor’s portfolio by the a-Value-at-Risk (a-VaR) of the portfolio return distributions (see

Chapter 1). The “Reward-to-Value-at-Risk ratio” is written as:

RVaRp =
[
E
(
rp
)
− r f

]
×|VaRrp,a|−1. (2.16)

This ratio allows the investor to gauge the performance of the managed portfolio rescaled

by a measure of extreme risk, instead of total risk. Note that the Value-at-Risk is widely used

in finance and insurance for capital and risk management. However, in recent years, it has been

criticized following Artzner et al. (1999) who showed that VaR does not have, theoretically,

all the four coherence properties (translation invariance, monotonicity, sub-additivity, positive

homogeneity). Those properties are required for any “good” risk measure. In particular, VaR

does not respect the sub-additivity principle.

With the same reasoning as that of the RVaR (see also Alexander and Baptista, 2003) ,

a few authors favor substitute risk measures, such as the modified VaR (Favre and Galeano,

2002) , the Conditional VaR (Martin et al., 2003) and the MiniMax measure (Young, 1998) .
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The Alexander-Baptista (2003) modified Reward-to-Value-at-Risk Ratio. Strongly in-

spired by Dowd (2000), Alexander and Baptista (2003) proposes to add the risk-free rate at

the denominator of the original Dowd (2000) Reward-to-Value-at-Risk ratio such as:

mRVaRp =
[
E
(
rp
)
− r f

]
×
[
|VaRrp,a|+ r f

]−1 , (2.17)

where VaRrp,a is the a-Value-at-Risk of the investor’s portfolio return distribution.

The Favre-Galeano (2002) Reward-to-modified Value-at-Risk. Favre and Galeano

(2002) introduce a measure named the “Reward-to-modified Value-at-Risk ratio” (RmVaR

for short) considering higher-order moments in order to gauge the non-Gaussianity of the in-

vestor’s portfolio returns. Based on the Cornish-Fisher expansion (1938) , the authors propose

to use a modified Value-at-Risk, i.e. mVaRrp,a, as:

RmVaRp =
[
E
(
rp
)
− r f

]
×
(
mVaRrp,a

)−1 , (2.18)

with: 
mVaRrp,a =−

{
E
(
rp
)
+σrp ×

[
qa +

(
q2

a−1
)
× skrp/6

+
(
q3

a−3×qa
)
×κrp/24−

(
2×q3

a−5×qa
)

×
(
skrp

)2
/36
]}

,

where qa is the a-quantile of the portfolio returns.

Rankings obtained with the measures developed by Dowd (2000) and Favre and Galeano

(2002) are identical when considering Gaussian portfolio return distributions.

The Martin-Rachev-Siboulet (2003) Reward-to-Conditional Value-at-Risk. Martin

et al. (2003) suggest the “STARR” (standing for Stable Tail Adjusted Return Ratio) which

uses the Conditional Value-at-Risk or CVaR (see Artzner et al., 1999) . This risk measure

aims to give information about the average amount of potential losses suffered by the port-

folio manager, contrary to VaR which only provides a probability of potential losses defined

from a threshold. In order to keep consistent with our previous notations, we rename this
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measure the “Reward-to-Conditional Value-at-Risk ratio” (RCVaR for short) which is given

by:

RCVaRp =
[
E
(
rp
)
−E (rB)

]
×
(
CVaRrp,a

)−1 , (2.19)

with:

CVaRrp,a =−E
[(

rp− rB
)
|rp− rB ≤VaRrp,a

]
=−ESrp,rB,τ3 ,

where τ3 =VaRrp,a and CVaRrp,a is the Conditional Value-at-Risk of returns of the p portfolio

in excess of the benchmark portfolio returns rB, which is equivalent to the Expected Shortfall

ES.

CVaR is suggested when investors want to evaluate the performance of their portfolio

according to the average amount of their worst potential losses, defined beyond a given a-

Value-at-Risk level.

The Young (1998) MiniMax Ratio. Young (1998) develops a similar approach to the

Mean-Variance portfolio selection rule (Markowitz, 1952) based on a linear programming

problem. This principle uses minimum return of the investor portfolio rather than variance

as a measure of risk to set the optimal portfolio, also denoted as the “MiniMax” portfolio.

More precisely, the chosen portfolio is the one that minimizes the maximum loss over all past

observation periods, for a given level of return. Formally, the optimal portfolio is the solution

of the linear program proposed by Young as:

̂MiniMaxt = argmax
w j∈[0,...,1]

(
M̂t

)
, (2.20)

where the estimator of the minimum investor’s portfolio return is:

M̂t = min
i∈[1,...,t]

(
I

∑
i=1

w jr j,i

)
.

In fact, given a vector of weights, M̂t is the estimated minimum return over time. More-

over, the difference between the returns of the portfolio over the period of interest and the

minimum return will either be positive or zero. From the solution presented above, Young
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(1998) introduces a further performance measure:

Yop =
[
E
(
rp
)
− r f

]
× (MiniMax)−1 . (2.21)

We should mention that the MiniMax measure can also be interpreted as the investor’s port-

folio return associated to a VaRrp,100%. Given historical or simulated future returns data on a

collection of assets, an optimal “MiniMax portfolio” can be constructed using such a linear

programming technique. Under weak conditions, the MiniMax principle corresponds approx-

imately to an expected utility maximizing principle, with the implied utility function repre-

senting an extreme form of risk aversion.

The Yitzhaki (1982) Gini Ratio. Yitzhaki (1982) suggests an alternative method to the

Mean-Variance approach for comparing uncertain prospects based on the Gini coefficient. He

proposes the following performance measure, called the Gini ratio:

Yip =
[
E
(
rp
)
− r f

]
×
(
Gp
)−1 , (2.22)

where the Gini coefficient Gp (see Yitzhaki, 1982) , is defined as:

Gp =
1
2

E
(
| rp− r f |

)
.

The Gini coefficient is used as a statistical measure of dispersion; one of its advantages is

that it ranges from 0 to 1.

The Darolles-Gouri éroux-Jasiak (2009) “L-performance” Measure. Darolles et al.

(2009) develop a measure, called “L-performance”, similar to the previous Gini ratio. Indeed,

the L-performance is defined as the ratio between the first and the second order of Trimmed L-

moments (Elamir and Seheult, 2003) , which can be seen as truncated versions of traditional

Linear-moments (L-moments). The L-moment of order 1 is equal to the mean and the L-

moment of order 2 is defined as:
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L2
p =

1
2
×E

(
rp,[2:2]− rp,[1:2]

)
, (2.23)

where rp,[1:2] and rp,[2:2] are order statistics corresponding, respectively, to the smallest and

largest returns in a sample composed by two observations.

L-moments are more robust to outliers than Conventional-moments. Indeed, their linear struc-

ture makes them less sensitive on the effects of sampling variability. 4. As mentioned in

Darolles et al. (2009), Trimmed L-moments can be associated to different values of quan-

tiles, or equivalently to VaR, defined according to several confidence levels. The trimming

parameter allows the assigning of more weight to neighbourhoods of some risk levels of in-

terest. By increasing the sample size of returns from n to (2n+ 1), thus underweighting the

outliers of the return distribution, the authors propose a set of generalized L-performance ra-

tios using, for evaluating the dispersion measure in the denominator, the difference between

the (1−a)-VaR and the a-VaR, such as:

Lp,a =VaRrp,0.5×
(
VaR−rp,a−VaRrp,a

)−1 . (2.24)

The Yitzhaki (1982) Gini ratio and the Darolles et al. (2009) Linear-performance have

an interpretation similar to the one of the Sharpe ratio: they normalize the expected return of

the managed portfolio by a measure that evaluates the portfolio total risk through a measure

of dispersion. Based on the same approach, some authors have proposed additional perfor-

mance measures using different quantities to assess risk, such as the Mean Absolute Deviation

(Konno and Yamazaki, 1991) and the Range ratio (Caporin and Lisi, 2011) .

The Konno-Yamazaki (1991) Mean Absolute Deviation Ratio. Konno and Yamazaki

(1991) present another way of measuring performance by defining the Mean Absolute De-

viation ( Konno , 1988 and 1990 ) as the risk measure, a more robust estimator of the scale

compared to the standard deviation and more resilient to outliers in a data set. When comput-

ing the standard deviation, distances between portfolio returns from their mean are squared;

so, on average, large deviations are weighted more heavily and, thus, outliers can strongly

4 See Sillitto (1951) and Hosking ( 1989 and 1990 ) for more details on L-moments.



2.3 Relative Performance Measures based on Other Risk Measures 31

influence results. Thus, the proposed ratio, known as the “Mean Absolute Deviation ratio” is

defined as:

KYp =
[
E
(
rp
)
− r f

]
×
(
MADrp

)−1 , (2.25)

with the following usual estimator for the Mean Absolute Deviation of the managed p portfolio

returns denoted MADrp :

M̂ADrp =
I

∑
i=1

[∣∣∣∣∣rp,i−
I

∑
i=1

rp,i

∣∣∣∣∣
]

.

The interpretation of this measure is similar to the Sharpe (1966) ratio, except that it pe-

nalizes more heavily the performance of portfolios whose returns strongly vary negatively or

positively around their mean.

The Caporin-Lisi (2011) Expected Return over Range Ratio. Grounded on the max-

imum magnitude between the investor’s portfolio returns, Caporin and Lisi (2011) design a

performance measure, named “Expected Return over Range ratio” (ERR for short), which is

given by:

ERRp =
[
E
(
rp
)
− r f

]
×
(
RGrp

)−1 . (2.26)

Note that the Range of the managed portfolio p is estimated as:

R̂Grp =

{
max

i∈[1,...,t]

(
rp,i
)
− min

i∈[1,...,t]

(
rp,i
)}

,

where max(·) and min (·) are respectively the largest and the smallest investor’s portfolio

returns, denoted rp,i, over the time period i = [1, . . . , t].

This ratio gauges the direct impact of market shocks on the performance of the studied

portfolio. For instance, a high value of the range measure will imply a strong sensitivity of the

investor’s portfolio returns to the market turbulences and vice-versa.

The Martin-McCann (1989) Ulcer Index Performance. Martin and McCann (1989)

present a performance measure based on the Mean-Downside Deviation, the “Ulcer Index

Performance”, which compares the expected excess return with the square root of its average

squared weekly Drawdowns. This risk measure is called the “Ulcer Index”, due to ulcers (and
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sleepless nights) caused by high losses. Formally, it is given by:

UIPp =
[
E
(
rp
)
− r f

]
×
(
UIp

)−1 , (2.27)

where an estimation of the Ulcer Index is:

ÛIp,t =

[
1
t

t

∑
i=1

(
D̂p,i

)2
] 1

2

,

and:

D̂p,i =
maxτ∈[1,...,i] (NAVτ )−NAVi

maxτ∈[1,...,i] (NAVτ )
,

where D̂p,i are the Drawdowns of the investor’s p portfolio returns at time i = [1, . . . , t] com-

puted from weekly Net Asset Values (NAV).

Another way to define Drawdowns (see Caporin and Lisi, 2011) is:

D̂p,i = min
(

D̂p,i−1 + rp,i,0
)

, (2.28)

where Dp,0 = 0 and rp,i are the investor’s portfolio returns at time i ∈ [0, . . . , t] .

In practice, Drawdowns of the portfolio returns are computed over at least a five-year time

period. Several authors introduced similar performance measures with alternative Drawdown

measures, such as the Total Squared Drawdowns (Burke, 1994) , the Maximum Drawdown

(Young, 1991) and the Average Annual Maximum Drawdown (Kestner, 1996) . These indices

based on Drawdowns are well-suited for evaluating the appropriateness of portfolio manager’s

investment choices when focusing on extreme losses, and for comparing the effectiveness of

market timing strategies in reducing risk and avoiding large market downturns.

The Burke (1994) Sharper Ratio. Burke (1994) proposes the “Sharper ratio” by modi-

fying the Ulcer Index as the Total Squared Drawdowns of investor portfolio:

Bp =
[
E
(
rp
)
− r f

]
×
(
T SDrp

)−1 , (2.29)

where the Total Squared Drawdowns is estimated as:
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T̂ SDrp =

[
t

∑
i=1

(
D̂rp,i

)2
] 1

2

.

Burke (1994) computes the Drawdowns of the investor’s portfolio NAVs over one year from

monthly quotes.

Morever, Young (1991) suggests the “CALMAR Ratio”by focusing on the Maximum

Drawdown. We thus have:

Cp =
[
E
(
rp
)
− r f

]
×
(
MDrp

)−1 , (2.30)

with the following estimation of Maximum Drawdown:

M̂Drp = max
i∈[1,...,t]

(
D̂rp,i

)
.

The term “CALMAR” given by Young (1991) to his performance measure corresponds to

the initials of his company’s name, i.e. CALifornia Managed Accounts Reports. Young (1991)

recommends calculating the Maximum Drawdown over (at least) a three-year time period from

monthly NAVs.

Furthermore, Kestner (1996) presents the “Sterling ratio”, a slightly modified version of

the Young (1991) CALMAR ratio, which uses the average annual Maximum Drawdown over

several years to which he adds 10%, as follows:

Stp =
[
E
(
rp
)
− r f

]
×
[
E
(
MDrp

)
+10.00%

]−1 , (2.31)

where E
(
MDrp

)
is estimated by:

̂E
(
MDrp

)
=

(
1
Y

Y

∑
y=1

M̂D
(y)
rp,t

)
,

where M̂D
(y)
rp,t is the annual Maximum Drawdown of the investor’s p portfolio returns for the

year y such as y = [1, . . . ,Y ].

This performance measure was originally developed by Deane Sterling Jones. Kestner

(1996) also introduces the “K-ratio” which is computed as the slope of the regression line
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of the logarithmic investor’s portfolio NAVs divided by the standard error of the slope, nor-

malized by the root square of the number of observations. The recommended time period is 5

years. For computing the average annual Maximum Drawdown, Kestner (1996) suggests using

monthly quotes over a three-year period of time.

The indices based on the Drawdown are well-suited for evaluating the appropriateness of

the portfolio manager’s investment choices when focusing on extreme losses, and for compar-

ing the effectiveness of market timing strategies in reducing risk and avoiding large market

downturns.

The Hübner (2005) Generalized Treynor Ratio. In the context of the Arbitrage Pricing

Theory developed by Ross (1976), Hübner (2005) proposes a generalized version of the second

ranking measure proposed by Treynor (1965) - denoted T2,p previously - which is defined as

the abnormal return of a portfolio (Cf. Jensen, 1968 ) per unit of weighted-average systematic

risk sensitivity, normalized by the premium-weighted average systematic risk sensitivity of the

reference portfolio. The Generalized Treynor ratio is thus defined as:

GTp =
{[

E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

}
×


{

K

∑
k=1

[E (Fk)]×βrp,Fk

}
×

{
K

∑
k=1

[E (Fk)]×βrm,Fk

}−1

−1

. (2.32)

This generalized measure is equivalent to a weighted Jensen (1968) alpha which penal-

izes the performance of the portfolio manager when the exposition of his portfolio to each

risk loading is superior to the exposition of the market portfolio to these same loading factors.

In other words, the higher βrp,Fk compared to βrm,Fk , the lower the extra-performance of the

investor’s portfolio. The Generalized Treynor ratio is reduced to its original version T2,p when

the number of risk loadings is equal to one (in a single index model).

The Scholz-Wilkens (05 b) Investor-Specific Performance Measure. Combining the

Sharpe (1966) ratio and the first ranking measure introduced by Treynor (1965), Scholz and

Wilkens (05 b) suggest a performance measure, labelled the “Investor-Specific performance
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Measure”, based on a Stochastic Dominance approach. The authors assume that an investor

holds a position in the portfolio p1 (not liquid). Furthermore, the investor wants to allocate

some cash to a different fund, say portfolio i, which is the object of analysis, and will also

borrow or lend at the risk-free rate. Scholz and Wilkens (05 b) associate this additional invest-

ment with a second portfolio denoted p2. The aggregation of these two portfolios, p1 and p2,

represents the portfolio p. It will be necessary to build as many indexes as the number of funds

to be analyzed and/or compared. Assuming that the portfolio p1 is the market portfolio m, we

have:

ISMi = −wp2 ×
{[

E
(
rp2

)
− r f

]
×σ

−1
rm

}2
×S−2

i

−2×
(
1−wp2

)
×
{[

E
(
rp2

)
− r f

]
×T−1

1,i

}
, (2.33)

where wp2 ∈ [0,1] is the proportion fixed by the investor to allocate to the second portfolio p2,

1−wp2 is the proportion invested in the market portfolio p1, rp2 and rp are the returns of the

portfolio p2 and the global portfolio p, while Si and T1,i are defined in (2) and (6), respectively.

The use of these different substitute risk measures presents some advantages but also

drawbacks. Variants of the standard deviation (semi-volatility, L-moment of order 2, Mean

Absolute Deviation, Range Ratio among others) might not be theoretically justified for non-

Gaussian distributions. The Sortino-Satchell (2001) measure, and other derived ratios (for

instance, Sortino and van der Meer, 1991; Kaplan and Knowles, 2004) , refer to LPM only to

account for negative excess returns. However, small changes on the threshold, which is related

to the investor’s risk profile, can largely influence the LPM values. Additionally, in a dynamic

framework, an investor can be misguided by focusing on LPM when a speculative bubble

phenomenon occurs. Measures based on Value-at-Risk to evaluate risk of losses depend upon

the estimation methodology of VaR (parametric, non-parametric or semi-parametric) and im-

plicitly consider specific forms of utility functions (Kingston, 1989) . Finally, regarding the

measures of Drawdowns, inference and estimation become complex, because of the uncer-

tainty around the knowledge of the proper distribution of those quantities.





3

Measures of Absolute Performance

Summary. The second family presents the absolute PM, which can be formulated, in

general terms, as follows:

PMp = Π

[
P
(
rp− τ1

)
,Pth (rp− τ2 |Ω

)]
, (3.1)

where Pth (· |· ) is a function related to the theoretical performance of the investor’s portfolio,

conditionally to a set of information denoted by Ω . Most of the absolute Performance Mea-

sures can be, however, expressed in a straightforward manner, in which the Π (·, ·) function is

linear, such as:

PMp = P
(
rp− τ1

)
−Pth (rp− τ2 |Ω

)
. (3.2)

Absolute performance measures are positively influenced by an increase of the observed port-

folio performance and by a decrease of the theoretical one and, in standard practices, are

expressed in basis points.

The most influential measure is the Jensen alpha Jensen (1968). Based on the Capital Asset

Pricing Model (CAPM), this measure aims at evaluating the portfolio manager’s stock pick-

ing abilities. Many alternative versions have been proposed since the 70s. We describe the

main ones in the next three subsections. Firstly, we introduce the Jensen (1968) alpha, then

we present the main related measures and, finally, we group together miscellaneous absolute

measures, which adopt other approaches for gauging absolute investor management skills.
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3.1 The Jensen (1968) Alpha

Jensen (1968) proposes a performance measure, named “alpha”, defined as the expected

return of the investor’s portfolio in excess of that predicted by the CAPM. The Jensen alpha

is formulated as follows:

α
J
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm . (3.3)

This measure evaluates the contribution of manager’s choices to the performance of his

portfolio. The better the manager’s stock picking skills, the higher the value of the Jensen

alpha. The systematic risk sensitivity of the managed portfolio returns, denoted βrp,rm , might

refer to a proxy of the market portfolio, since investments realized by the investor may only

represent a portion of the market.

Despite the wide use of the Jensen alpha for gauging the selectivity skills of managers,

a number of criticisms have been advanced for this measure. The main one is related to the

definition of the market proxy. Indeed, a misspecification can significantly modify the final

ranking (see Roll, 1978 and 1979 ) of alternative investments. Furthermore, managers may

change their portfolio’s sensitivity to the systematic risk, according to their outlooks on market

variations. In this case, the Jensen alpha, based on a constant single risk factor model, may

counter-intuitively yield negative values (Treynor and Mazuy, 1966) . Finally, as for the Sharpe

ratio, the characteristics of the risk-free rate (unique and constant) are not realistic.

3.2 Jensen-type Absolute Measures of Performance

The performance measures, presented below, are close variants of the Jensen (1968) alpha.

However, they overcome some of its limits by attempting, with different approaches, to sepa-

rately gauge the selectivity and market timing abilities of portfolio managers. This subsection

is organized as follows. First, we present Jensen-type measures of performance based on a

single-factor model as, for instance, the Black (1972) zero-beta version as well as the Fama

(1972) index. Secondly, we discuss the multi-factor models. The main ones are the Connor-

Korajczyk (1986) model and the Ferson-Schadt (1996) conditional alpha. Thirdly, we present
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the performance measures capturing, specifically, the investor’s market timing abilities, such

as, the Treynor-Mazuy (1966) and the Henriksson-Merton (1981) parametric models.

The Black (1972) Zero-beta CAPM. Black (1972) proposes the “zero-beta CAPM” by

exploring the nature of capital market equilibrium under two restrictive assumptions. First,

he assumes the absence of a riskless asset, but considers different risk-free borrowing and

lending. Secondly, he supposes the existence of a riskless asset and the possibility to only

take long positions on it (short positions are not allowed). In both cases, the investor can take

unlimited long or short positions in risky assets. Then, the extra performance of the Black

(1972) zero-beta CAPM is given by:

α
ZB
p =

[
E
(
rp
)
−E (rz)

]
− [E (rm)−E (rz)]×βrp,rm , (3.4)

where rz is the return of the zero-beta portfolio z.

The interpretation of this performance measure is quite similar to the Jensen (1968) alpha,

since it only differs by considering the expected return of a zero-beta portfolio instead of the

risk-free rate. In this framework, the risky portion of the managed portfolio is a weighted

combination of the market proxy and the minimum-variance zero-beta portfolio.

Another similar model is the one suggested by Brennan (1970) who proposes to incorpo-

rate the individual taxation when evaluating the portfolio performance. Finally, Leland (1999)

suggests a corrected beta in order to take into account the investor’s preferences for skewness.

The Fama (1972) Net Selectivity Index. In order to quantify the selectivity abilities of

portfolio managers, Fama (1972) proposes a global performance measure, named the “Overall

Performance index”, which is written as:

OPp =
[
E
(
rp
)
− r̄
(
βrp,rm

)]
+
[
r̄
(
βrp,rm

)
− r f

]
, (3.5)

where r̄
(
βrp,rm

)
is given by:
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r̄
(
βrp,rm

)
= r f +

[(
rm− r f

)
× (σrm)

−1
]
×βrp,rm .

The Overall Performance index, given in Equation (3.5), is thus decomposed into two

parts. The first term, E
(
rp
)
− r̄(βrp,rm), is the selectivity reward component while the second

term, r̄(βrp,rm)− r f , corresponds to the risk reward component. From this statement, Fama

(1972) suggests a second measure, labeled “Net Selectivity index”, which is given by:

NSp =
[
E
(
rp
)
− r f

]
−
{[

E (rm)− r f
]
× (σrm)

−1
}
×σrp . (3.6)

The term E
(
rp
)
− r f describes the compensation earned by the manager for bearing his

portfolio total risk, whilst
{[

E (rm)− r f
]
× (σrm)

−1
}
×σrp just reflects the remuneration that

the manager would have obtained if his portfolio specific risk was rewarded as the systematic

risk. The Net Selectivity index thus evaluates the stock picking abilities of the manager by

assessing the extra return gained by the portfolio manager, simply comparing its excess return

to that he would have earned, if he had been totally invested in the market portfolio only - for

the same risk1.

The Leland (1999) Measure. Leland (1999) develops a performance measure, based on

the Rubinstein (1976) asset pricing model, which supposes lognormal market portfolio returns

and a representative investor characterized by a Power Utility function - the third derivative

of this utility function is positive, which implies a skewness preference. The Leland (1999)

measure is formally given by:

α
LB
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×β

∗
rp,rm

, (3.7)

with:

β
∗
p,m = σ

rp,
[
−(1+rm)

−b
]×{σ

rm,
[
−(1+rm)

−b
]}−1

,

and:

1 For similar approaches, see also the measures proposed by Chauveau and Maillet (1997),
Morey and Morey (1999), Cantaluppi and Hug (2000), Chauveau (2004), Briec et al.
(2007), and, Briec and Kerstens (2010).
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b =
[
E (1+ rm)−

(
1+ r f

)]
×σ

−2
1+rm

.

Leland (1980) shows that an investor wants a portfolio insurance, if his risk tolerance

grows with wealth more quickly than the average investor’s risk tolerance. On the contrary,

the investor will prefer a rebalancing strategy (concavity), if his risk tolerance grows less

quickly than the markets. Moreover, risk tolerance grows more quickly when the investor has

a preference for greater skewness. If the returns distributions are Gaussian, the results of the

Leland (1999) measure and of the Jensen (1968) alpha are similar. The Leland (1999) measure

gauges the contribution of the manager’s investment choices to the performance of his port-

folio. The better the portfolio manager’s stock picking abilities, the higher the Leland (1999)

measure and the portfolio performance.

The Smith-Tito (1969) Modified Jensen Measure. Based on the Jensen (1968) alpha,

Smith and Tito (1969) propose a measure, originally named the “Modified Jensen” measure,

that is written as:

α
ST
p =

{[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

}
×
(
βrp,rm

)−1 , (3.8)

where βrp,rm is the systematic risk sensitivity of the investor’s portfolio returns.

The Ang-Chua (1979) Excess Return Index. From the three-moment CAPM (see Ru-

binstein, 1973; Kraus and Litzenberger, 1976) , Ang and Chua (1979) propose a two-factor

CAPM, whose peculiarity is the introduction of the asymmetry coefficient of the portfolio

return distribution, which is written as:

α
AC
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×β1,rp,rm −

[
E (rz)− r f

]
×β2,rp,rz . (3.9)

This measure assesses the expected return of the investor’s portfolio relative to the market

portfolio and the minimum-variance zero-beta portfolio, which is assumed to have a non-null

skewness coefficient. Moreover, the risk premium on the zero-beta portfolio and its associated

sensitivity coefficients, β2,rp,rz , should always have opposite signs, as long as a positive skew-
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ness is preferred by the manager. Thus, the more the portfolio return distribution is positively

skewed, the better the performance.

The Treynor-Mazuy (1966) Market Timing Model. In order to assess the investor’s

market timing abilities, Treynor and Mazuy (1966) develop a bivariate regression model. The

additional term, compared with the mono-factorial model previously introduced, corresponds

to the squared market proxy premium and captures the convexity of the managed portfolio

return function of the market return. The function can be evaluated with market data referring

to the following regression model:

rp,t − r f = α
T M
p +

(
rm,t − r f

)
×β1,rp,rm +

(
rm,t − r f

)2×β2,rp,rm + εt . (3.10)

where αT M
p is the Treynor-Mazuy alpha, the t subscripts denote the time index, β1,rp,rm is

the systematic risk sensitivity of returns on the investor’s portfolio, while β2,rp,rm is the corre-

sponding market timing coefficient.

This regression model provides rankings that are directly linked to the manager’s abilities

to forecast the sign of future returns of the market proxy, and thus to adjust his market expo-

sure. If we interpret ex post this model, a positive value of the estimate β̂2,rp,rm implies some

market timing abilities. A few authors (see, for instance, Goetzmann et al., 2007; Hübner,

2011) reinterpret the original formulation developed by Treynor and Mazuy (1966) with in-

vestment strategies including derivatives. Indeed, we can compute the extra performance of

a market timer, defined in equation (3.10), as the difference between the ex post returns of a

portfolio actively managed by an investor and those of a replicating portfolio, consisting of

a combination of options (put or call, depending on the directional and quadratic exposure,

respectively β̂1,rp,rm and β̂2,rp,rm ) and the risk-free rate. In other words, we can interpret the

term
(
rm,t − r f

)
× β̂1,rp,rm −

(
rm,t − r f

)2× β̂2,rp,rm as the estimated cost (premium) saved by

the portfolio manager from buying options.

The Henriksson-Merton (1981) Parametric Market Timing Model. Henriksson and

Merton (1981) - see also Merton (1981) and Henriksson (1984) - suggest a bivariate regres-
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sion model for market timing inspired by option theory. The main idea is to introduce a put

option pay-off, interacting with the evolution of portfolio market returns, in order to sepa-

rately identify investors’ micro- and macro-forecasting abilities. These abilities correspond to,

respectively, selectivity and market timing skills. The suggested regression model is:

rp,t − r f = α
HM
p +

(
rm,t − r f

)
×β1,rp,rm +max

(
r f − rm,t ,0

)
×β2,rp,rm + εt , (3.11)

and β2,rp,rm is the market timing coefficient, while αHM
p is the Henriksson-Merton alpha.

As mentioned by Henriksson and Merton (1981), it is crucial to view this model by consid-

ering both the performance measured by the alpha, reflecting the investor’s abilities in terms of

stock selections, and the second beta associated with the agent’s market timing skills. Consid-

ering this parametric model as an ex post measure, the authors interpret the market timing abil-

ity or “macro-forecasting” skills, expressed by the estimated term max
(
r f − rm,t ,0

)
× β̂2,rp,rm ,

as the ability to implement a hedge strategy with some put options written on the market port-

folio. More precisely, this term is equivalent to an investment strategy consisting of buying

the market portfolio protected by β̂2,rp,rm put options, where the strike is equal to the risk-free

rate. This strategy will pay off if the ex post market portfolio return is lower than the risk-free

rate and the balance is invested (borrowed), if positive (negative) at the risk-free rate. The co-

efficient β̂2,rp,rm thus represents the number of options that have been spared by the portfolio

manager thanks to his market timing capacity for having the same overall ex post return as the

protected strategy. For alternative ways to measure the contribution of market timing to active

returns, see Coles et al. (2006) , Bollen and Busse ( 2001 and 2005 ), Comer et al. (2009) and

Hübner (2011).

The Morey-Morey (1999) Mutual Fund Performance Appraisals. Morey and Morey

(1999) present two efficiency measures, called “Radial Expansion” and “Radial Contraction”

for identifying managed portfolios that are strictly dominated by others. Firstly, they focus on

the expected return and, then, on the total risk level. The two performance indexes are given

by:

REp = argmax
θ≥1

(
θE(rp)≤ E(rB)

∣∣∣σ2
rB
≤ σ

2
rp

)
, (3.12)
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and:

RCp = argmin
0<θ≤1

(
σ

2
rB
≤ θσ

2
rp

∣∣∣E(rB)≥ E(rp)
)

. (3.13)

These two measures correspond to optimization, in some directions, to the ex post ef-

ficiency frontier in the risk – expected return plane. The focus of the “Radial Expansion”

approach is to expand the mean return of the managed portfolio (while keeping the total risk

constant). Conversely, the “Radial Contraction” approach is to contract the total risk of the

studied portfolio (for a same expected return). The value of the resulting θ will thus be the

loss in terms of returns or the over-risk given by the portfolio when compared to the efficient

ones (with a θ above the unit in the first approach and below the unit in the second).

There also exist other efficiency measures built on similar methodologies; for example,

Cantaluppi and Hug (2000) propose to evaluate the level of under-optimization of the in-

vestor’s portfolio simply by dividing its Sharpe ratio by that of the optimal portfolio – in a

Mean-Variance plane – when total risks are identical for both compared portfolios. Chauveau

and Maillet (1997), and Chauveau (2004) share the same line of reasoning with borrowing

constraints, while Briec et al. (2007) and Briec and Kerstens (2010), respectively, add a skew-

ness and kurtosis parameter to the analysis framework.

The Hwang-Satchell (1998) Higher-Moment CAPM. According to a Mean-Variance-

Skewness-Kurtosis approach, Hwang and Satchell (1998) consider the incremental value of

higher moments in modeling a CAPM for emerging markets. The main objective is to know

if the performance of the investor’s portfolio invested in emerging markets can be better ex-

plained by taking into account the effect of the skewness and kurtosis of studied portfolio

return distributions. The model yields to the following form:

α
HS
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×λ1,p,m−

(
βrp,rm − skrp,rm

)
×λ2,m, (3.14)

with: 
λ1,rp,rm =

[
(skrm)

2× skrp,rm − (κrm −1)×βp,m

]
×
[
(skrm)

2− (κrm −1)
]−1

,

λ2,rm = (skrm ×σrm)×
[
(skrm)

2− [κrm −1]
]−1

,
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and:  βrp,rm = E
{[

rp−E
(
rp
)]
× [rm−E (rm)]

}
×E

{
[rm−E (rm)]

2
}−1

skrp,rm = E
{[

rp−E
(
rp
)]
× [rm−E (rm)]

2
}
×E

{
[rm−E (rm)]

3
}−1

,

where skrp,rm is the co-skewness between the investor’s p portfolio and the m market portfolio

returns.

We can notice that if the market portfolio return distribution is Gaussian, the first sensitiv-

ity coefficient, λ1,rp,rm , is equal to the systematic risk sensitivity of the returns on the investor’s

portfolio βrp,rm , and the second one, λ2,rm , is null, leading to the Jensen (1968) alpha. From the

Sears-Wei (1985) Four-Moment CAPM, Hwang and Satchell (1999) also propose a Higher-

Moment CAPM with the introduction of the co-kurtosis and a quadratic return generating

process.

The Brennan (1970) Tax-based Model. Based on the Farrar and Selwyn (1967) works

about individual taxation, Brennan (1970) develops a tax-based CAPM which considers the

average taxation rates applied to dividends and capital gains earned by the portfolio manager.

Thus, the Brennan (1970) tax-based model gives the following extra-performance:

α
B
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

−
[(

ϕp− r f
)
−
(
ϕm− r f

)
×βrp,rm

]
×ηp, (3.15)

with:

ηp = (η1−η2)× (1−η2)
−1 ,

where ηp is the marginal tax rate, η1 and η2 are, respectively, the average taxation rates for

dividends and capital gains, ϕp and ϕm are the dividend yields of the investor’s portfolio p and

of the market portfolio m.

This model gauges the investor’s portfolio extra-performance from the arbitrage made

by the investor between the exposure to the systematic risk of his portfolio returns and the

dividend yields perceived from the holding of risky assets. The first term,
[
E
(
rp
)
− r f

]
−[

E (rm)− r f
]
× βrp,rm , represents the expected return of the investor’s portfolio in excess of
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the market portfolio, and corresponds to the Jensen (1968) alpha. The second component,[(
ϕp− r f

)
−
(
ϕm− r f

)
×βrp,rm

]
×ηp, evaluates the dividend yield, adjusted to the investor’s

marginal tax rate, obtained from the holding of risky assets in the managed portfolio in excess

of those he would have obtained, if he had held the market portfolio.

The McDonald (1973) Total Performance Measure. Within an international framework,

McDonald (1973) introduces a measure, alias “total performance”, which evaluates the per-

formance of portfolios holding risky assets in two different markets which are assumed totally

independent. The author defines a portfolio p held by a manager who wishes to invest in the

French and the US stock markets, denoted m1 and m2. The McDonald (1973) total perfor-

mance measure is thus:

α
McD
p =

[
E
(
rp
)
− r f

]
−
[
E (rm1)− r f

]
×β

∗
rp,rm1

−
[
E (rm2)− r f

]
×β

∗
rp,rm2

, (3.16)

where: 

β ∗rp,rm1
= wp,m1 ×

[(
σrp,rm2

×σrm1 ,rm2

)
−
(

σ2
rm2
×σrp,rm1

)]
×
[(

σrm1 ,rm2

)2
−
(

σ2
rm1
×σ2

rm2

)]−1
,

β ∗rp,rm2
= wp,m2 ×

{[
σrp,rm1

×σrm1 ,rm2

]
−
(

σ2
rm1
×σrp,rm2

)}
×
[(

σrm1 ,rm2

)2
−
(

σ2
rm1
×σ2

rm2

)]−1
,

where rm1 and rm2 are the returns of the French stock market portfolio m1 and the US stock

market portfolio m2, β ∗rp,rm1
and β ∗rp,rm2

are the weighted systematic risk sensitivities of port-

folio p, wp,m1 = 1−wp,m2 are the corresponding portfolio weights.

This measure assumes a world of segmented markets, where the non diversifiable risk sen-

sitivity is defined relative to the domestic market alone. The French risk-free rate is used as a

benchmark. If we consider a French investor, he will need to figure out the best combinations

in terms of investments and systematic risk sensitivities to domestic and foreign markets to

get the higher excess return. Pogue et al. (1973) generalize the McDonald (1973) total per-
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formance measure to a portfolio containing two asset classes, say bonds and securities, and

where risky assets are negotiated in several international stock markets, with no limit about

the number of countries. These two performance measures evaluate the portfolio manager’s

ability to choose the most promising markets and his skill in selecting the best stocks in each

market.

The Fama-French (1993) Three-factor CAPM. Fama and French (1993) propose an-

other version of the three-factor CAPM (Cf. Rubinstein, 1973; Kraus and Litzenberger, 1976)

by assuming that two asset classes outperform the market: small-cap companies and stocks

with a high book-to-market ratio (customarily termed “value stocks”, and their opposites

“growth stocks”). Building on this intuition, they propose to introduce to the traditional Jensen

(1968) alpha two additional factors: SMB, detecting the extra-performance of Small compa-

nies with respect to the Big ones (Small-Minus-Big factor) and HML (High-Minus-Low) that

is associated with the extra-return given by companies with a high book-to-market ratio com-

pared to those with a low book-to-market ratio. In this model, the extra-performance is given

as:

α
FF
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

− [E (rSMB)]×βrp,rSMB − [E (rHML)]×βrp,rHML , (3.17)

where rSMB and rHML are the returns of the SMB and HML risk factors, while βrp,rSMB and

βrp,rHML are the corresponding sensitivities.

An extension is proposed by Carhart (1997), who suggests a four-factor CAPM by adding

a fourth sensitivity factor to assess the persistence of studied risky assets over the time period

of interest and then takes into account the momentum effect (Jegadeesh and Titman, 1993) .

This model has the following form:

α
C
p =

[
E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

− [E (rSMB)]×βrp,rSMB − [E (rHML)]×βrp,rHML

− [E (rPR1Y R)]×βrp,rPR1Y R , (3.18)
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where the factor PR1Y R (stands for “PRevious 1 YeaR”) corresponds to the one-month lagged

eleven-month past returns.

These two multi-factor models allow investors to have a more appropriated decomposi-

tion of their portfolio returns, where the sensitivity coefficients and risk premia on the factor-

mimicking portfolios indicate the proportion of mean return associated with three (four) main

investment strategies: high versus low beta stocks, large versus small market capitalization

stocks, value versus growth stocks (and a one-year return momentum versus contrarian stocks).

The Connor-Korajczyk (1986) Model. Connor and Korajczyk (1986) present a general-

ization of the CAPM model. Their proposal explores the effects of several risk factors in the

analysis of investment performance. This alpha-index implied by the model is:

α
CK
p =

[
E
(
rp
)
− r f

]
−

K

∑
k=1

[E (Fk)]×βrp,Fk , (3.19)

where E (Fk) is the expected risk premium of the k-th factor and βrp,Fk is the sensitivity of the

investor’s portfolio returns to the k-th factor.

Connor and Korajczyk (1986) determine the relevant risk factors by using traditional

model specification techniques. If the value of the expected risk premium of the k-th risk

factor is significantly positive, this factor is kept as a rewarding factor, and disregarded other-

wise. The two-step analysis is carried out again with the remaining factors.

The Ferson-Schadt (1996) Conditional Performance Measure. A refinement of the

Connor-Korajczyk (1986) model is developed by Ferson and Schadt (1996) in order to explain

the evolution of the systematic risk sensitivity of the managed portfolio over time. The main

idea is to use time-varying conditional expected returns and conditional betas. This conditional

performance measure is defined as:

α
FS
p =

[
E
(
rp
)
− r f

]
−

K

∑
k=1

E (Fk)×βrp,Fk ,t , (3.20)
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where βrp,Fk ,t are time-varying coefficients and represent the risk sensitivity of the managed

portfolio returns p to the k-th risk factor at time t.

Time-variation of managed portfolio betas may come from three distinct sources: the sen-

sitivities of the underlying assets may change over time; the weights of underlying assets in

the benchmark will vary as relative value changes; and a manager is paid for actively man-

aging weights of his portfolio. The Ferson and Schadt (1996) approach shows that a negative

value of a Jensen (1968) alpha might be due, in reality, to a time-varying beta.

The Aftalion-Poncet (1991) Index. Proposing a new definition of the market price of

risk, Aftalion and Poncet (1991) build an index which compares the expected return of the

investor’s portfolio in excess of the expected return of its reference portfolio, to the return that

should have been reached according to the total risk of the managed portfolio. The Aftalion

and Poncet (1991) index is defined such as:

APp =
[
E
(
rp
)
−E (rB)

]
−PXR

(
σrp −σrB

)
, (3.21)

with:

PXR(σrp −σrB) =
[
E
(
rp
)
−E (rB)

]
×
(
σrp −σrB

)−1 ,

where PXR(·) is the market price of risk of the portfolio p.

The expected excess return of portfolio p contributes positively to this index, while the

excess total risk contributes negatively. The market price of risk, which has the same dimen-

sion as an expected excess return divided by an excess total risk, ensures that the two terms

in the index have the same scale. The Aftalion and Poncet (1991) index represents the extra

return that investors require on average for each additional point of risk. Authors illustrate

their measure by doing a comparison between a portfolio invested in cash over 30 years and

a diversified portfolio invested in the French stock market. The expected returns of these two

portfolios are, respectively, 8.00% and 11.00%, while the corresponding volatilities are equal

to 3.00% and 18.00%. In this specific case, the authors conclude that an extra total risk equal

to 15.00% is compensated for an extra return of 3.00%. The market price of risk is thus equal
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to .20, i.e. 3.00% over 15.00%.

The Sortino-Price (1994) Fouse Index. Combining a Mean-Downside risk computation

and the Expected Utility Theory, Sortino and Price (1994) propose a measure, entitled the

“Fouse index”, which is computed from a Generalized Lower Partial Moment of order 2 of

the investor’s portfolio returns, adjusted for the coefficient of risk aversion of the manager (see

Pratt, 1964; Arrow, 1971 ). The Fouse index is formulated as:

α
F
p = E

(
rp
)
−
(
A×GLPMrp,r,r,2

)
. (3.22)

This model determines the performance of the investor’s portfolio as the difference be-

tween its expected return and a “subjective” measure of its downside risk. This function of

the LPM of order 2 of the investor’s portfolio returns may thus vary widely according to the

manager’s risk profile.

The Melnikoff (1998) Index. In the same vein as Sortino and Price (1994), Melnikoff

(1998) proposes to combine a Mean-Downside risk computation and the Prospect Theory

(Kahneman and Tversky, 1979) . Indeed, the proposed measure corresponds to the difference

between the investor’s portfolio return in excess of a “subjective” measure of its downside risk

that is given by:

α
M
p = E

(
rp
)
−
[
(ϖ −1)×GLPMrp,r f ,r f ,1

]
, (3.23)

where ϖ is a constant reflecting the loss-to-gain aversion weight.

The interpretation of this model is quite similar to the one of the Sortino-Price (1994)

Fouse Index.

The Lobosco (1999) Style Risk-Adjusted Performance Measure. Directly based on the

Modigliani and Modigliani (1997) works, Lobosco (1999) suggests a measure, named “Style

Risk-Adjusted Performance” , which compares the performance of the managed portfolio to

its benchmark with respect to the investor’s management style (Sharpe, 1992) . The Lobosco
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(1999) Style Risk-Adjusted Performance measure is equal to:

SRAPp =
[
E
(
rp
)
×
(
1+λ1,rp,rm

)
− r f ×λ1,rp,rm

]
−
[
E (rB)×

(
1+λ2,rp,rB

)
− r f ×λ2,rp,rB

]
, (3.24)

where λ1,rp,rm = σrm ×
(
σrp

)−1 and λ2,rp,rB = σrm × (σrB)
−1.

Lobosco (1999) considers that portfolios characterized by high Risk-Adjusted Perfor-

mances (Modigliani and Modigliani, 1997) are deemed to have better managers than those

with low results. While this may often be the case, it is not always true since higher results can

only be the consequence of a style mandate, not of the manager’s skills. The proposed measure

is an attempt to compensate this drawback. In other words, the main objective is to show that

the underperformance of a portfolio may be perceived as a warning about the investment style

forced by the company, beyond the personal abilities of the fund manager.

The Graham-Harvey (1997) Measures. Graham and Harvey (1997) build two perfor-

mance measures based on market timing advice, provided by investment newsletters, which

recommend increasing investments in risky assets before market appreciation and decrease

before market shocks. The Graham and Harvey (1997) measures are written as:

GH1,p = E
(
rp
)
−E (rm)×λrm , (3.25)

and:

GH2,p = E
(
rp
)
×λrp −E (rm) , (3.26)

where λrp ∈ R+ and λrm ∈ R+ are the (un-)leverage factors of the investor’s portfolio p and

the market proxy m.

The first performance measure only deals with the (un)leverage of the market proxy, while

the second focuses on the (un)leverage of the investor portfolio. In both cases, the (un)leverage

factor is determined by supposing that the two elements entering the performance measures

have the same total risk.



52 3 Measures of Absolute Performance

The Briec-Kerstens-Jokung (2007) Overall Efficiency Index. Briec et al. (2007) intro-

duce a performance measure, based on a Mean-Variance-Skewness (MVS) approach and using

a shortage function, which can be seen as an extension of the Briec et al. (2004) work. The

shortage function aims at looking for possible increases in return and skewness and decreases

in variance. The Briec et al. (2007) overall efficiency index is computed as:

OEp = argmax
θ∈R+

[
φ
(
rp
)
+θg≤ φ (rB)

]
, (3.27)

where φ(·) = [E(·),−σ(·),Sk(·)] is a function which represents for a given portfolio its ex-

pected return, variance and skewness, and g = (gE ,gV ,gSk) is a directional vector for each of

the first three Conventional moments.

This model implies a simultaneous maximization of all the three moments, namely mean,

(minus) variance and skewness, until finding the best (more efficient) portfolio. For instance,

assuming that an investor decides to invest all his cash in a single risky asset, he obtains in his

study a value of 92.00% by computing the Briec et al. (2007) overall efficiency. This result

implies that it is possible to do better in terms of overall efficiency compared to this risky

asset if we apply the optimal portfolio weight, which will improve return and skewness and

reduce risk of this same asset by 92.00%. This example can be easily extended to a portfolio

containing several risky assets.

These absolute performance measures, directly based on the Jensen alpha, display some

peculiar problems, regardless of the different proposed improvements. Fama (1972) analyzes

the ex post compensation earned by the manager, compared to that he would have received if

his portfolio had been completely exposed to the systematic risk. Also in this case, the defini-

tion of the market proxy plays a crucial role. The efficiency measures (Chauveau and Maillet,

1997; Morey and Morey, 1999; Cantaluppi and Hug, 2000) aim at determining the potential

under-performance experienced by the manager, in comparison to the performance he could

have reached by holding the ex post optimal portfolio. Extensions to the third (Briec et al.,

2007) and to the fourth moments (Briec and Kerstens, 2010) also exist. Yet, they are subject to

issues related to the characterization of return densities. Treynor and Mazuy (1966) study the
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investor’s market timing abilities by analyzing the convexity of the return function linking the

portfolio to the market return. In the same vein, Henriksson and Merton (1981) propose using

call options for ex post reproducing this function. Here, the critical point is that exact rankings

rely upon the precise characteristics of derivatives that are used for replication (strike, time to

maturity, Greeks...). Black (1972) defines a zero-beta portfolio as the benchmark, assuming

the absence of a riskless asset. However, it still relies on CAPM assumptions. Finally, Connor

and Korajczyk (1986) extend these approaches within a multi-factorial framework, while Fer-

son and Schadt (1996) suggest a correction by considering time-varying betas, that explicitly

highlights, as in Treynor and Mazuy (1966), the potential mixture between market timing and

selectivity qualities of portfolio managers, that definitely cannot be considered as orthogonal.

However, since the role of a portfolio manager is precisely to adjust his positions according to

expected behaviors of factors and market conditions, we may end up in a paradoxical situation

in which the performance of a “good” manager is totally explained, and thus null.

3.3 Other Miscellaneous Absolute Performance Measures

Miscellaneous measures, described hereafter, are based on a similar approach, when com-

paring the observed performance and the theoretical one. However, contrary to the Jensen-

type measures, the link between the observed and the theoretical expected returns is much less

straightforward. In other words, the way these measures are built is more complex, and they

might not be expressed in return terms.

The Moses-Cheyney-Veit (1987) Measure. Moses et al. (1987) develop a measure that

considers both the expected active return and the diversification level of risky asset portfolio

held by an informed investor. The main idea is to evaluate, in terms of performance, the arbi-

trage made by the manager between his performance and his idiosyncratic risk, assumed to be

priced by the market. Formally, the measure is defined as:

MCVp =
{[

E
(
rp
)
− r f

]
−
[
E (rm)− r f

]
×βrp,rm

}
×λ

−1
p , (3.28)
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with:

λp =
[
E (rm)− r f

]
×
[(

σrp ×σ
−1
rm

)
−βrp,rm

]
.

This measure corresponds to a weighted Jensen alpha such as the extra performance of the

investor’s portfolio is adjusted by the market risk premium associated with its extra portfolio

total risk (see Moses et al., 1987) .

Other performance measures have been proposed with the aim of taking into account man-

agement skills: Muralidhar (2001) develops the Correlation-Adjusted Performance to compare

the management skills of several investors within a peer group, with respect to a target Track-

ing Error; Muralidhar (2002) refines the approach allowing a comparison between portfolios

with different inception dates, for instance; Scholz and Wilkens (005a) generalize Muralidhar

(2002) focusing on the systematic risk sensitivity of portfolio returns.

The Modigliani-Modigliani (1997) Risk-Adjusted Performance Measure.

Studying the impact of leverage strategies on the portfolio performance, Modigliani and

Modigliani (1997) develop a close variant of the measure proposed by Statman (1987) named

“eSDAR” (standing for “excess Standard Deviation Adjusted Return). The authors called it

“M² 2” or “Risk-Adjusted Performance” and the aim is to scale down (up) the expected return

of the investor’s portfolio with respect to its total risk, when the latter is higher (lower) than

the market portfolio total risk. The proposed measure is written as:

RAPp = γp×
[
E
(
rp
)
− r f

]
+ r f , (3.29)

where the leverage parameter γp is defined as γp =
(

σrm ×σ−1
rp

)
.

This measure evaluates the expected return of a portfolio composed with risky and risk-

free assets per unit of market total risk. In other words, it allows the investor to assess the

compensation earned for the extra total risk with respect to that of the market portfolio risk.

Scholz and Wilkens (005a) propose a similar performance measure, the “Market Risk-

Adjusted Performance” by considering the systematic risk sensitivity of the managed port-

folio returns instead of its total risk. The Scholz and Wilkens (005a) Market Risk-Adjusted
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Performance measure is expressed as:

MRAPp = T1,p + r f , (3.30)

where T1,p is the Treynor (1965) ratio and r f > 0 is the risk-free rate.

Differently, Graham and Harvey (1997) build two measures by making the comparison

between the unleveraged (respectively leveraged) investor’s portfolio expected return and the

leveraged (resp. unleveraged) market portfolio expected return, assuming an identical total risk

for both portfolios. Finally, Lobosco (1999) develops the “Style Risk-Adjusted Performance”,

which compares the performance of the managed portfolio to its benchmark with respect to

the investor’s management style (Sharpe, 1994) .

The Grinblatt-Titman (1989) Positive Period Weighting Measure. In response to the

timing-related biases of the Jensen (1968) alpha, Grinblatt and Titman (1989) propose a mea-

sure, named “Positive Period Weighting measure” (PPW in short), which attributes a positive

weight to the excess return of the portfolio of a real (versus lucky) market timer over the

studied time horizon. This measure is computed as:

PPWp,t =
t

∑
i=1

wi×
(
rp,i− r f

)
, (3.31)

with weights satisfying: ∑
t
i=1 wi×

(
rm,i− r f

)
= 0

∑
t
i=1 wi = 1.

The weight vector is chosen to have non-negative values that make the weighted sum

of the excess returns of the benchmark portfolio equal to zero. We suppose, here, that the

benchmark/market portfolio is not always above the risk-free rate, otherwise the structure of

weights cannot respect the first condition. This measure is thus both benchmark and sample

period specific. There are many sets of weights that satisfy the conditions above. Following

Grinblatt and Titman (1994), the weights are derived from marginal utilities of an uninformed

investor characterized by a power utility function (see Grinblatt and Titman, 1994 , for addi-
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tional details). In this context, a negative value of the Jensen (1968) alpha attributed to a real

market timer can thus be explained in terms of (negative) marginal utilities, when considering

that the portfolio return level reached by the investor exceeds the satiation point defined by

its utility function. Consequently, the PPW measure assigns positive weights to the portfolio

excess returns of informed investors having stock picking and/or market timing abilities and

a null performance otherwise. A similar measure, based on a two-period comparison, was in-

troduced by Cornell (1979).

The Henriksson-Merton (1981) Non parametric Market Timing Model. Henriks-

son and Merton (1981) suggest a non parametric model for gauging market timing abilities

of portfolio managers. Under some assumptions detailed in Merton (1981) and Henriksson

and Merton (1981), the authors show that the sum of two conditional probabilities of a cor-

rect forecast is a sufficient statistic for the evaluation of the portfolio manager’s market timing

abilities. More precisely, the non parametric market timing model is written as:

HMp = Prob 1 + Prob 2−1, (3.32)

with:  Prob 1 = Prob
[

δ = 0|rm ≤ r f
]

Prob 2 = Prob
[

δ = 1|rm > r f
]

,

where δ is the market timer’s forecast variable, and δ = 0 (δ = 1) corresponds to an incorrect

(correct) forecast of the market direction.

The aim of this measure is to focus on the correctness of forecasts of a portfolio manager

regarding the evolution of portfolio market returns. It is, however, assumed that the conditional

probabilities Prob1 and Prob2 do not depend on the magnitude of the expected portfolio mar-

ket return in excess of the risk-free rate. In other words, it is implicitly assumed that a better

forecasting ability on average leads to a better performance.

The Statman (1987) excess Standard Deviation-Adjusted Return. Inspired by the

works of Markowitz (1952), Statman (1987) proposes the following measure:
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eSDARp = γp×
[
E
(
rp
)
− r f

]
+ r f −E (rm) , (3.33)

where the leverage parameter γp is defined as γp =
(

σrm ×σ−1
rp

)
.

The Cantaluppi-Hug (2000) Efficiency Ratio. Cantaluppi and Hug (2000) propose di-

rectly evaluating the performance of the investor’s portfolio by reference to its maximum po-

tential performance. They suggest using the quotient between the standard Sharpe ratio of

a portfolio and its optimal Sharpe ratio, assuming an identical portfolio total risk. The Can-

taluppi and Hug (2000) efficiency ratio writes:

REp =
{[

E
(
rp
)
− r f

]
×
(
σrp

)−1
}
×
{[

E (rB)− r f
]
× (σrB)

−1
}−1

. (3.34)

In the Cantaluppi and Hug measure, the reference portfolio (the benchmark) is the

tangency portfolio obtained in the unconstrained Mean-Variance framework of Markowitz

(1952). The Cantaluppi and Hug (2000) efficiency ratio then considers the maximum poten-

tial return of the portfolio under consideration. A result strictly inferior to one means that the

studied portfolio is currently below its maximum potential return, whereas a ratio equal to one

implies that the portfolio reached its higher return level, according to the given investor’s risk

profile. Then, the closer to one the Cantaluppi and Hug (2000) efficiency ratio, the closer to

the maximum performance the portfolio under analysis.

The Muralidhar (2001) Correlation-Adjusted Performance. In order to compare the

management skills of several investors within a peer group, Muralidhar (2001) develops a

performance measure, called “M 3 ” or CAP (which stands for Correlation-Adjusted Perfor-

mance), which considers their common objectives, both in terms of portfolio total risk and

Tracking Error. The author assumes an investor who splits his portfolio p between an invest-

ment fund, p1, a benchmark and the risk-free rate. The M3 is given as:

CAPp =
[
E
(
rp1

)
×wp1

]
+[E (rB)×wB]+

[
r f ×

(
1−wp1 −wB

)]
, (3.35)

with:
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wp1 =

[
σrB ×

(
σrp1

)−1
]
×
{[

1−ρ2
τ

]
×
[
1−ρ2

rp1 ,rB

]−1
} 1

2

wB = ρτ −wp1 ×
{[

σrp1
×σ−1

rB

]
×ρrp1 ,rB

}
,

and:  ρτ = 1−
[
T Erp,rB ×

(
2×σ2

rB

)−1
]

ρrp1 ,rB = 1−
[
T Erp1 ,rB ×

(
2×σ2

rB

)−1
]

,

where wp1 = [0,1] and wB = [0,1] are, respectively, the weights of the investment fund and the

benchmark. Furthermore, ρrp1 ,rB = [−1,1] is the correlation coefficient between the investment

fund and the benchmark, and ρτ = [−1,1] is the target correlation coefficient.

Muralidhar (2001) argues that this model enables us to ensure that rankings based on

Correlation-Adjusted Performance are identical to those founded on management abilities.

While wp2 and (1−wp1 −wp2) may be greater than or less than zero (negative coefficients

being equivalent to shortening the futures contract relating to the benchmark and borrowing

at the risk-free rate), wp1 is constrained to be positive. Active and passive management ap-

proaches can be analyzed through the amount invested in the benchmark: the higher the value

of wp2 , the more active the investment strategy. Then, the calculation of optimal proportions

will allow us to determine a Correlation-Adjusted Portfolio characterized by the higher ex-

pected return, caused by a low volatility and a high correlation with the benchmark, given the

fixed target, and a weak set of correlations with other managed portfolios. A corrected version

of Muralidhar (2001) is developed by Muralidhar (2002), named “Skill, History And Risk-

ADjusted” which aims to take into account the differences in terms of data history between

the studied portfolios. The Skill, History And Risk-ADjusted measure writes:

SHARADp =CAPp×C (S) , (3.36)

where CAPp is the Muralidhar (2001) Correlation-Adjusted Portfolio, the degree of “con-

fidence” in the manager’s skills is C (S) ∈ [0,1] and S is a function of the Information Ratio

defined as:

S = H2−1
×
{

IRp−
[(

σ
2
rp
−σ

2
rB

)
×
(

2×T E1/2
rp,rB

)−1
]}

, (3.37)
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where H is the maximum number of returns for a common time horizon when comparing the

performance of several portfolios with different lengths of data history, IRp is the Information

Ratio of the portfolio p.

This performance measure shares all the properties of the Muralidhar (2001) “M 3 ” mea-

sure and, in addition, accounts for the data period in such a way that it is more consistent with

the manager’s skill evaluation. The author defines the “confidence” in the manager’s skill, de-

noted C(S), as the cumulative probability of a return distribution assumed Gaussian for a given

quantile S. As an illustration, we can read from the standard normal table that C (S) = 84.13%

when considering the quantile S equal to 1.

The measures reported in this subsection differ from Jensen-type ones, since they can-

not be directly expressed as a comparison between observed and theoretical performances.

The contributions of these approaches are numerous, but their application displays other lim-

its. Henriksson and Merton (1981) develop a free-parameter model by considering managers’

correct and incorrect forecasts. The accuracy of this methodology relies on the exact knowl-

edge of all positions of the portfolio manager. Similarly, Fama (1972), Moses et al. (1987)

compare the compensations earned by the manager, given his exposure to the systematic and

specific risks. Nevertheless, the structure of the measure is rather ad-hoc, and it disregards

the correlation level between the managed and market portfolio returns (Muralidhar, 2001) .

Grinblatt and Titman (1989) propose to adjust the investor’s portfolio excess returns by time

period-varying weights to reflect the behaviour of market timers. Yet, rankings are sensitive

to the methodology adopted for recovering the weighting scheme. Cornell (1979) compares

the performance of managed portfolios between two disjointed time intervals. However, the

choice of periods is fundamental (date, frequency and length) and this implies that we are

able to recover the prices of all assets in both time windows. Like others, Modigliani and

Modigliani (1997) compare the performance reached by the manager to that of a riskless as-

set, both adjusted by the surplus of portfolio total risk, relative to the market proxy. However,

this methodology heavily relies on the assumptions of the Mean-Variance framework.





4

General Performance Measures explicitly based on the

Return Distribution

Summary. Developed from the end of the 90s, the third family includes measures based

on some general features of the return distribution. In general terms, this class of performance

measures can be written in the following form:

PMp = P+
(
rp
)
×
[
P− (rp

)]−1
, (4.1)

where P+ (·) and P− (·) relate to a specific (respectively right and left) part of the support of

the returns density. Measures that belong to this third family are based on features of the return

distribution other than the first two moments or some quantiles. However, some of them might

be viewed as simple extensions of relative measures presented in the first section. Most of the

following density-based Performance Measures can be defined as the ratio of two Generalized

Partial Moments (GPM for short). We thus introduce, hereafter, a new generalized function,

denoted Hp (.), corresponding to the ratio of a GHPM onto a GLPM, both raised to two

different powers, namely 1/k1 and 1/k2, adjusted with a term in which appears the cumulative

density function of the returns:

PMp = Hp
(
rp,τ1,τ2,τ3,τ4,o1,o2,k1,k2,k3,k4

)
=

[
1−Frp (τ3)

]k3

Frp (τ4)
k4

×
[
E
( ∣∣τ1− rp

∣∣o1
∣∣rp > τ3

)](k1)
−1

×
{[

E
( ∣∣τ2− rp

∣∣o2
∣∣rp < τ4

)](k2)
−1
}−1

, (4.2)
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Sign - has been suppressed in both terms of the H function. The cumulative density function

is here to respect the conditionnal expectation definition. where τ1 corresponds to a threshold

(a reserve return r, a MAR, the null return or r f ...) for computing gains and τ2 for calculat-

ing losses or risk, τ3 = VaR−rp,a1 is another threshold – related to a given confidence level

a1 – specifying the right part of the support of the return density under study (i.e. gains),

τ4 =VaRrp,a2 is a last threshold – linked to another given confidence level a2 – associated with

the left part (i.e. losses), o1 and o2 are intensification constants reflecting the investor’s atti-

tude towards gains and losses, k1,k2,k3, and k4 are normalizing constants strictly positive. This

notation can be easily applied to several relative performance measures. The examples seem

wrong.These ratios can’t be put under H(....) format because they could be negative whereas

Hp(.) is strictly positive, So I’ve deleted this footnote. 1 Generalized performance measures

are evaluated by taking ratios of some ranges of positive and negative portfolio excess returns.

In other words, compared to relative performance measures, the following quantities differ

both in their numerator (expected return, as in the previous case) and in their denominator

(risk measure). The first measure we consider is the Bernardo-Ledoit (2000) Gain-Loss ra-

tio, which penalizes the over-performance (gains – in the numerator) realized by the manager

by his under-performance (losses – in the denominator). Another well-known performance

measure is the Keating-Shadwick (2002) Omega measure that extends the Bernardo-Ledoit

(2000) measure with a unique general threshold. The introduction of these two density-based

measures is the starting point of many further developments. After introducing the two previ-

ously cited measures, we focus on specific performance measures that are directly based on a

comparison between some upside and downside sequences of portfolio returns (measured by

Partial Moments). Finally, we present the most generalized measures of this family, namely

the Biglova et al. (2004) Generalized Rachev Ratio.

1 For instance, the Sharpe (1966) ratio, the Reward-to-CVaR (2003) ra-
tio, the Sortino-Meer (1991) ratio and the Information (1994) Ratio
can be written as: Sp = Hp

(
rp,r f ,−∞,E

(
rp
)
,+∞,1,1,2,2

)
, RCVaRp =

Hp
(
rp,r f ,−∞,0,VaRrp,a,1,1,1,1

)
, SMp = Hp

(
rp,MAR,−∞,MAR,MAR,1,2,1,2

)
and IRp = Hp

(
rp,rB,−∞,rB,+∞,1,2,1,2

)
.
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4.1 The Bernardo-Ledoit (2000) Gain-Loss Ratio and the

Keating-Shadwick (2002) Measure

Bernardo and Ledoit (2000) build a performance measure, the “Gain-Loss ratio”, which

aims at evaluating the attractiveness of an investment opportunity by considering specific parts

of the portfolio return density. This measure is defined as the expected positive excess return of

a portfolio divided by (the opposite of) its expected negative excess return. Using Generalized

Higher/Lower Partial Moments, the Gain-Loss ratio writes as:

GLp =
[
GHPMrp,r f ,r f ,1

]
×
[
GLPMrp,r f ,r f ,1

]−1

= Hp
(
rp,r f ,r f ,r f ,r f ,1,1,1,1,1,1

)
. (4.3)

The formula has been changed to fit Hp(.) new definition. The approach of Bernardo and

Ledoit (2000) was later generalized by Keating and Shadwick (2002) with their Omega mea-

sure. The Omega is a simple generalization of the Gain-Loss ratio, and is obtained by relaxing

the threshold, which is not constrained to be equal to the risk-free return, such as:

Op =
[
GHPMrp,τ,τ,1

]
×
[
GLPMrp,τ,τ,1

]−1

= Hp
(
rp,τ,τ,τ,τ,1,1,1,1,1,1

)
. (4.4)

The Omega ratio separately gauges favourable and unfavourable excess returns, with respect

to a threshold τ that has to be defined.

The performance measurement approaches just mentioned go beyond the study of the first

moments, and consider additional features of the return distribution. However, this methodol-

ogy raises a few issues. Evaluations of rewards and losses are directly linked to the character-

istics of underlying densities. They are, thus, subject to usual misspecification and estimation

problems. For instance, the Gain-Loss ratio is very sensitive to the presence of outliers be-

cause it focuses, by definition, on the extreme positive and negative excess returns. Moreover,

this performance measure assumes a constant return reference, generally associated to a tar-

get return. However, as mentioned before, an error on the chosen threshold can significantly
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influence the accuracy of resulting values. Furthermore, the impact of volatility on the final

rankings based on these measures is rather uncertain in some cases.

4.2 Upside / Downside-related Performance Measures

These performance measures are directly based on the two representative ratios of this

family, namely the Gain-Loss ratio and the Omega measure, although they can be seen as im-

proved forms.

The Gemmill-Hwang-Salmon (2006) Loss-Averse Performance Measures. Gemmill

et al. (2006) suggest two Loss-Averse Performances, respectively denoted by “LAPS
p ” (“S”

stands for “simple”) and by “LAPH
p ” (where “H” refers to the “House-money” effect). The

“House-money” effect refers to the behavior of investors who are often willing to take more

risk when they have experienced gains in the past. These two performance measures are de-

rived within a behavioral finance framework. Indeed, the authors define their model according

to the utility (or value) function introduced by Kahneman and Tversky (1979). According

to our general function Hx (.), these two Loss-Averse Performance measures can be simply

summarized as:

LAPp = γp×
[
GHPMrp,τ,τ,o1

]
×
[
GLPMrp,τ,τ,o2

]−1

= γp×Hp
(
rp,τ,τ,τ,τ,o1,o2,1,1,1,1

)
, (4.5)

where γp = 1 for LAPS
p and γp is a positive number for LAPH

p .

The interpretation of the first proposed measure LAPS
p , when the loss aversion coefficient

Lp is set to 1, is similar to the Omega measure (exactly equal if the density is symmetrical and

the aversion to loss for the investor for this portfolio is equal to 1). Regarding the second one,

denoted by LAPH
p , the time-varying loss aversion coefficient allows the introduction of the

“House-money” behavioral effect described in Thaler and Johnson (1990) and Barberis et al.

(2001); in fact, past losses realized by the portfolio manager, with respect to the benchmark,

affect the current performance assessment of the portfolio in a negative way.
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Working within the Prospect Theory framework, Watanabe (2006) proposes a similar mea-

sure called “Prospect Ratio” that is defined such as:

PRp =
{[

E
(
rp
∣∣rp ≥ 0

)
+2.25×E

(
rp
∣∣rp ≤ 0

)]
−MAR}×E

[(
rp−MAR

)2
∣∣∣rp−MAR < 0

]−1/2
.

(4.6)

The Sortino-Meer-Plantinga (1999) Upside-Potential Ratio. From the use of a Gener-

alized Lower Partial Moment of order 2 for estimating downside risk, Sortino et al. (1999)

propose the “Upside-Potential ratio” which compares the managed portfolio returns in excess

of a MAR to the root square of the downside deviation of the investor’s portfolio returns. This

performance measure is written as:

UPp =
[
GHPMrp,MAR,MAR,1

]
×
[
GLPMrp,MAR,MAR,2

]−1/2

= Hp
(
rp,MAR,MAR,MAR,MAR,1,2,1,2,1,1/2

)
. (4.7)

Farinelli et al. (2008) provide a generalized performance measure which is defined as the ratio

between a Generalized Higher Partial Moment of order o1 and a Generalized Lower Partial

Moment of order o2. In our notation, the proposed measure is given by:

FTp =
[
GHPMrp,r,r,o1

]1/o1 ×
[
GLPMrp,r,r,o2

]−1/o2

= Hp
(
rp,r,r,r,r,o1,o2,o1,o2,1/o1,1/o2

)
. (4.8)

This performance measure is a generalized version of the upside versus downside deviation

measure. The choice of the parameters o1 and o2 depends on the investor’s preferences: high

values of o1 imply a strong preference for gains, while large values of o2 correspond to an

increase in the aversion to losses; in other words, o1 (respectively o2) reflects the investor’s

feelings about the consequences of being above (respectively below) the threshold defined as

a reserve return. If the investor’s main concern is simply to fall below this threshold without

particular regard to the magnitude, then small values of o1 and o2 are appropriate. On the con-
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trary, large values of o2 are required to penalize strong negative deviations from the reserve

return.

The Biglova-Ortobelli-Rachev-Stoyanov (2004) Ratios. Biglova et al. (2004) develop

two performance measures, named “Rachev ratio” and “Generalized Rachev ratio”, which are

directly linked to the Bernardo-Ledoit (2000) Gain-Loss ratio by focusing on two specific

parts of the return density. These two measures aim at proposing a robust criterion when the

investor’s portfolio return distribution is heavy-tailed. The Rachev Ratio is defined as:

RRp =
[
−ES(−rp),r f ,τ3

]
×
[
−ESrp,r f ,τ4

]−1

= Hp
(
rp,r f ,r f ,r f + τ3,r f + τ4,o1,o2,1,1,0,0

)
, (4.9)

whilst the Generalized Rachev Ratio2 is given by:

GRRp =
[
−PES(−rp),r f ,τ3,o1

]1/o1
×
[
−PESrp,r f ,τ4,o2

]−1/o2

= Hp
(
rp,r f ,r f ,r f + τ3,r f + τ4,o1,o2,o1,o2,0,0

)
. (4.10)

These two performance measures allow investors to assess the frequency and impact of ex-

treme events and then incorporate this risk feature when gauging the portfolio performance.

The Rachev ratio can be seen as a special case of the Generalized Rachev ratio which pro-

poses to characterize, through the coefficients o1 and o2, the investor’s attitude towards risk.

Following the same analysis, Ortobelli et al. (2010) propose two other performance measures

based on Drawups-Drawdowns, where Drawups are defined similarly to Drawdowns, but fo-

cusing on positive returns. The first ratio, called the “Rachev Average Drawup-Drawdown

ratio”, is computed as the average Drawup of the investor’s portfolio returns over its average

Drawdown. The second ratio is the “Rachev Maximum Drawup-Drawdown ratio”, using the

2 The original definition of the Generalized Ratchev Ratio is GRRp = {E[max(rp −
r f ,0)o1 |rp− r f > τ3]}o−1

1 ×{{E[max(r f − rp,0)o2 |r f − rp < τ4]}o−1
1 }−1. We assume here

that τ3 is a positive number, typically VaR95% and τ4 is a negative number, typically VaR5%,
which allows us to write the GRR as in Equation (4.9) , since the (double-)conditioning is
now useless (because τ3 > 0 and τ4 < 0).
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maximum operator instead of the average to compute the portfolio performance.

The Lavinio (2000) d-ratio. Similar to the Bernardo-Ledoit (2000) Gain-Loss ratio and

the Keating-Shadwick (2002) Omega measure, Lavinio (2000) proposes a performance mea-

sure that compares the positive returns of an investor’s portfolio with the negative ones. The

d-ratio thus reads:

dRp =

∣∣∣∣∣∣nu
rp

T

∑
t=1

max
(
rp,t ,0

)
×

[
nd

rp

T

∑
t=1

min
(
rp,t ,0

)]−1
∣∣∣∣∣∣ , (4.11)

where nu
rp

and nd
rp

are the numbers of returns, respectively, superior and inferior to zero.

The Kazemi-Schneeweis-Gupta (2004) Sharpe-Omega Ratio. Combining, in a sense,

the Omega measure with the Sharpe ratio, Kazemi et al. (2004) introduce a performance mea-

sure, the “Sharpe-Omega ratio”, whose peculiarity is to compare an expected excess return -

as the Sharpe ratio - to the expected value of a put option - as the Omega ratio. More formally,

the Kazemi et al. (2004) Sharpe-Omega ratio is given by:

SOp =
[
E
(
rp
)
− r
]
×
(
GLPMrp,r,r,1

)−1 . (4.12)

This ratio focuses on the shape of the investor’s portfolio return distribution below the

threshold r. The price of the put option is associated with the cost of protecting portfolio re-

turns from large negative deviations (when these are inferior to the threshold). We can consider

two main cases. If the investor’s portfolio excess return is negative (then SOp < 0), the higher

the put price and the better the portfolio performance. Indeed, high volatility will increase

the put price and the value of the Sharpe-Omega ratio. If the result is positive, the higher the

put price and the worse the portfolio performance. Unlike the first case, high volatility will

increase the put price and reduce the score of the Sharpe-Omega ratio.

Among these different improvements which aim at overcoming the main limits of the two

representative ratios, namely the Gain-Loss ratio (Bernardo and Ledoit, 2000) and the Omega



68 4 General Performance Measures explicitly based on the Return Distribution

measure (Keating and Shadwick, 2002) , Farinelli et al. (2008) present the most generalized

expression when varying the thresholds and the powers applied to the managed portfolio ex-

cess returns. Nevertheless, they share some of the same limits as other measures also based

on VaR. Biglova et al. (2004) respectively estimate rewards and losses through GHPM of the

order o1 and GLPM of the order o2. However, these parameters should be linked to the in-

vestor’s attitude towards performance and risk, which have to be further established and are

difficult to estimate.



5

Performance Measures directly derived from Utility

Functions

Summary. The main feature of measures in this fourth family is to be straightly obtained

from the study of general and explicit utility functions. This kind of PM can be summarized

using the following form:

PMp = G
{

E
[
U
(
rp− τ

)]}
, (5.1)

where U (·) is a value (or utility) function and G (·) is a specific function that depends upon

the performance of the investor’s portfolio. Then, the main purpose of these measures is to ex-

plicitly incorporate the investor’s preferences and risk profiles, through representative utility

functions. This fourth family of measures, expressed per unit of marginal utility, is repre-

sented by the Morningstar (2002) Risk-Adjusted Return. This measure aims at assessing the

portfolio performance by considering a fixed investor’s risk-aversion coefficient. Two distinct

sub-functions can be defined based on a Power Utility Function that depends upon the value

of this risk-aversion coefficient. Following the same approach adopted for the MRAR, several

measures (see, for instance, Stutzer, 2000; Kaplan, 2005; Goetzmann et al., 2007) have been

proposed in the literature. Hereafter, we first make a brief description of the most used utility-

based performance measure, namely the Morningstar (2002) Risk-Adjusted Return. Secondly,

we group together measures derived from the same principle.
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5.1 The Morningstar (2002) Risk-Adjusted Return

Morningstar (2002) develops a performance measure, named “Morningstar Risk-Adjusted

Return” (MRAR), which is built on the Expected Utility theory and considers a Power Utility

function. The MRAR is defined as the expected value of the certainty equivalent annualized

geometric return on a given horizon1. The Morningstar (2002) Risk-Adjusted Return is given

by:

MRARA,p =

E
[(

1+ rp
)−A

] −12
A −1, A >−1,A 6= 0

exp
{

E
[
ln
(
1+ rp

)]}
−1, A = 0

(5.2)

where in the Morningstar rating system, portfolio returns are adjusted for management fees,

taxes and are expressed in deviation from the risk-free rate.

We can notice that the risk aversion coefficient is equal to 2 by Morningstar. Sharma

(2004) suggests a risk aversion coefficient of 3, while Aı̈t-Sahalia et al. (2004) estimate a

coefficient of 2.20 for Ultra High Net Worth individuals, raising some doubts on the value

used by Morningstar. This is particularly relevant given that the Morningstar rating system is

mostly used by retail (non Ultra High Net Worth) investors2.

The MRAR aims at “predicting” over- and under-performing funds. The fund ranking

published by Morningstar is represented by “stars”, from one to five, with a five star evaluation

being the best.

Most of the measures collected in the first three families consider, in some ways, the

investor’s utility function to evaluate performance, but the link is sometimes not explicit. On

the contrary, this is the case for the last family of measures. To our knowledge, the MRAR

is probably one of the most followed by investors (see also Stutzer, 2005 , for a detailed

study). However, it presents two major limits. The author refers to a Power Utility Function for

characterizing the behaviour of investors, which displays an unrealistic Constant Relative Risk

Aversion coefficient over time. Furthermore, in the Morningstar rating system this measure

assumes a risk aversion coefficient equal to 2. Yet, this value is questioned since it is shown to

vary according to the main investor’s risk profiles (see Lisi and Caporin, 2012) and to market

1 See also Pézier ( 2010 and 2012 ) for more details about the use of the certainty equivalent
when evaluating the performance of investment portfolios.

2 see Lisi and Caporin (2012) for further comments on this aspect.
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conditions (see Li, 2007; Coudert and Gex, 2008) . Lastly, in a dynamic setting, an investor

using the MRAR criterion, can expose his portfolio to a simple momentum effect.

5.2 Other Utility-based Performance Measures

We present hereafter measures that are similar to the Morningstar (2002) Risk-Adjusted

Return, but rely on different families of utility functions to characterize the behaviour of the

final investor.

The Stutzer (2000) Performance Index. Moving from a behavioral analysis framework,

Stutzer (2000) develops a measure, named “Performance Index” which considers the investor’s

degree of risk aversion when they are characterized by an Exponential Utility function. The

proposed index is thus written:

PIp =− log
{

exp
[
−A×E

(
rp− rB

)]}
. (5.3)

The Performance Index can be interpreted as the (decay) rate at which the probability that

the managed portfolio underperforms his benchmark declines over time.

We can notice that when portfolio return distributions are i.i.d., Stutzer (2000) defines the

loss probability of a portfolio manager such as:

Prob
(
rp,t − rB,t ≤ 0

)
'
(

A×T−.5
)
× exp

(
−PIp× t

)
, (5.4)

where T is the number of observations and PIp is the decay rate, which corresponds to the

“Performance Index”.

In other words, the higher the value of the Performance Index, the closer to the null value

is the loss probability of the studied portfolio. When the returns distributions is Gaussian,

Stutzer (2000) shows that this performance measure is equivalent to the half of the squared

Sharpe ratio. In the absence of normality, rankings obtained with the proposed index will take

into account the degree of preference for positive skewness.
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The Kaplan (2005)Lambda Measure. Combining the features of the Kaplan-Knowles

(2004) Kappa measure and the Stutzer (2000) Performance Index, Kaplan (2005) presents

a performance measure, named “Lambda”, which is based on a generalized Fishburn utility

function and a loss penalty function. Kaplan (2005) defines the Generalized Fishburn Utility

Function as:

U
(
rp− rB

)
=
(
rp− rB

)
− l
[
max

(
rB− rp,0

)]
, (5.5)

where l (X) designs the loss penalty function defined in equation (5.7).

Another version of the penalty function is suggested by Watanabe (2006) who defines it

as:

l
(
rp
)
= E

[
max

(
rp,0

)
+2.25×min

(
rp,0

)]
. (5.6)

Moreover, Kaplan (2005) defines a new class of utility functions named “Proportional

Risk Aversion” in which the investor-specific risk aversion parameter multiplies the active

return in the utility function. The Kaplan (2005) Lambda measure can be obtained by solving

the following maximization problem:

Λp =
[
−A×E

(
rp− rB

)]
− l
(
max

(
rB− rp,0

))
, (5.7)

where l (X) = exp(X)−X−1 is the loss penalty function.

The main innovation of this performance measure is to propose a variant of the Stutzer

(2000) Performance Index, penalizing the negative excess returns through lp(max(rB−rp, 0)).

In other words, the Kaplan (2005) Lambda measure can be associated to a downside version of

the Stutzer (2000) Performance Index, whose main objective is to correct the positive excess

return of the manager’s portfolio by past drawdowns.

The Goetzmann-Ingersoll-Spiegel-Welch (2007) Manipulation-Proof Performance

Measure. Goetzmann et al. (2007) develop an “ungamable” performance measure, named

“Manipulation-Proof Performance Measure” (MPPM for short), to gauge the performance of

an active manager3. It is based on the risk aversion of investors, and is given by:

3 This can be viewed as a generalization of the Morningstar (2002) Risk-Adjusted Return
since ΘA,p = ln

[
1+MRARA−1,p

]
.
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ΘA,p = [(1−A)∆ t]−1× ln
{

E
{[(

1+ rp
)
×
(
1+ r f

)−1
]1−A

}}
, (5.8)

where the risk aversion satisfies A > 1 and ∆ t is the observation frequency expressed on a

yearly basis.

Goetzmann et al. (2007) define manipulation (or gaming) of a performance measure as

an action taken to increase a fund’s performance measure that does not actually add value

for the investors. This measure severely penalizes negative excess returns as the risk aversion

coefficient increases. Brown et al. (2010) introduce a derived performance measure, called

“Doubt Ratio”, which is given by:

DRp =
[
Θ2,p×

(
Θ2,p−Θ3,p

)−1
]
+2. (5.9)

The Doubt Ratio is based on differences between MPPM when considering two risk

aversion coefficients. Beyond a certain degree of manipulation of portfolio returns, values

of MPPMs will tend to be (almost) equal, for any risk aversion coefficients, i.e. whatever the

type of investor risk profiles. In other words, this phenomenon means that the portfolio will

have a similar MPPM ranking for all investors, which is doubtedly right.

Brown et al. (2010) thus propose to make the difference between MPPMs computed for

two different risk aversion coefficients in order to reflect the possibility of manipulation. In the

presence of manipulated return distributions, values of Θ2,p and Θ3,p will be close, and thus,

the Doubt Ratio will be high, which could be suspicious.

More recently, Joenväärä et al. (2013) propose a conditional version of the MPPM that

takes macro-economic information into account.

The Billio-Jannin-Maillet-Pelizzon (2014) Generalized Utility-based N-moment Mea-

sure. Following Billio et al. (2011), Billio et al. (2014) propose a flexible measure of perfor-

mance, named “Generalized Utility-based N-moment measure” (GUN for short), relying on

a characterization of the whole return distribution, which is hardly gamable. More precisely,

through a Taylor expansion, it takes into account the first four moments of the return distribu-

tion and the associated sensitivities of a representative investor, reflecting his preferences and
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risk profile. It is written such as:

GUNN,i,p =
N

∑
n=1

λn,i,p×mn,p
(
rp
)

, (5.10)

where λn,i,p are the sensitivities of a representative investor i regarding the n-th moment de-

fined as:

λn,i,p = (−1)n−1 (n!)−1
ωn,i×gn,i

[
m1,p(rp)

]τn , (5.11)

where n= [1, . . . ,N], n! is the n-factorial, τn is a power, ωn,i is a weight and gn,i(·) is a function

of the first moment m1,p(.) of the underlying return distribution.

The Smetters-Zhang (2013) General Ranking Measure. Smetters and Zhang (2013)

develop a performance measure, named “General Ranking Measure” (GRM for short), which

is a specific case of the GUN measure since the sensitivities are defined by the unit roots. More

precisely, the GRM is given by:

GRMN,i,p =
N

∑
n=1

(n!)−1
λ
∗
n,i,p×Cn,p× (zN)

n, (5.12)

where zN is the smallest absolute real root z that solves ∑
N
n=1[(n−1)!]−1λ ∗n,i,p×Cn,p×zn−1 =

0, with λ ∗n,i,p = 1 for n = 1, or λ ∗n,i,p = (A) . . .(A+n−2) for n ≥ 2 and, where A denotes the

risk aversion coefficient.

As exhibited by the different measures previously mentioned, several improvements have

been proposed to solve the main limits of the MRAR, but they are still exposed to some draw-

backs. Stutzer (2000) proposes to use an Exponential Utility function since it exhibits a posi-

tive relative risk aversion. Kaplan (2005) adds a Utility Function with a penalty to punish the

positive excess return of the manager’s portfolio by its past losses. Again, these two measures

are dependent on the definition of the benchmark and on a raw approximation of the investor’s

risk aversion coefficient. Finally, Goetzmann et al. (2007) propose a manipulation-proof mea-
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sure, but it happens in some cases that this measure greatly relies on the first moment of the

underlying return distribution.
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